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Abstract—This work presents a hierarchical navigation archi-
tecture and cascade classifier for sample search and identification
on a space exploration rover. A three tier navigation architecture
and inverse Jacobian based robot arm controller are presented.
The algorithms are implemented on AERO, the Autonomous
Exploration Rover, participating in the NASA Sample Return
Robot Centennial Challenge in 2013 and initial results are
demonstrated.
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I. INTRODUCTION

The insatiable human curiosity and desire to explore proved

Earth is neither the sole planet in the solar system nor the

center of the universe. Technologies developed over the last

40 years have significantly enhanced humanity’s ability to ex-

plore extraterrestrial bodies with teleoperated robots returning

stunning images and scientific data of distant planets. In this

work we present AERO, the Autonomous Exploration Rover,

to advance the next evolution in space exploration. The next

generation of exploration robots need to go where teleoperated

robots cannot bring us.

AERO, shown in Figure 1, is comprised of a differential-

drive four-wheeled mobility platform and 6-DOF manipulator

designed to participate in the NASA Sample Return Robot

Centennial Challenge. The task is to navigate a large outdoor

area, find and locate various samples, and return them to

the starting platform. Samples are defined in three broad

categories: easy, medium, and hard. The easy samples are

fully defined in terms of physical characteristics, the medium

samples are defined in broad terms about general size, color,

or texture, and the hard samples are vaguely defined, engraved

with a small unique marking.

Fusing a combination of data from a fixed, forward-facing

stereo vision system, LIDAR, and IMU, AERO implements

a simultaneous localization and mapping (SLAM) algorithm

to mark what areas are searched and return to the starting

platform at the end of the competition. A second panning

stereo vision system on a mast is used to locate and identify

samples using object classifier and texture-based algorithms.

This work presents a navigation system and vision system

that allow the rover to avoid obstacles, navigate towards the

samples, recognize the samples, and retrieve them. At a con-

ceptual level, the system is designed with hierarchical control

layers. The supervisor, global planner, and local planner layers

handle the state of the robot, current path to the target, and

avoiding obstacles respectively.

Fig. 1. AERO along with its VR tag homing beacon.

In order to locate and identify samples, AERO utilizes

stereo vision object recognition, localization, and grasping

algorithms to control the manipulator and retrieve the samples.

Our algorithm first extracts the location information of the

object of interest using disparity maps for location in 3D

space. An object recognition algorithm determines the type

of object and its orientation to plan a proper approach vector

and grasping strategy.

AERO’s misson can be split into three main subtasks:

navigating and localizing within the large outdoor area, iden-

tifying and classifying samples, and retrieving the samples

with a manipulator. The paper is organized in the following

manner: Section II introduces the platform design of AERO,

Section III outlines the previous work relevant to the navigation

and vision algorithms, Section IV explains the architecture of

the navigation system, Section V describes the local planner,
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Section VI explains the global planner, Section VII outlines

the process for detecting and retrieving samples, Section VIII

describes the controller for the manipulator, Section IX shows

the preliminary results of our implementation, and Section X

summarizes our work.

II. PLATFORM DESIGN

The system architecture is designed with the main sub tasks

in mind. For example, AERO leaves the maximal amount of

space on top of the robot for sample storage. The sensors are

selected to comply with the competition rules, but also provide

useful data to complete every subtask. A 6-DOF manipulator

was selected to provide the most flexibility in sample handing,

especially with the hard, undefined samples.

Inside AERO, a Roboteq MDC2250 dual output 60A motor

controller implements closed loop velocity control on the

primary drive motors. The control loop is closed using standard

quadrature output optical encoders. The primary battery pack

is also inside the robot towards the front consisting of sixteen

40Ah CALB LiFePO4 cells in an 8s2p configuration to provide

25.6V, 80Ah nominally. LiFePO4 cells were selected because

of their good compromise between energy density, safety,

and charge cycles. Two Manzanita Micro MK3x8 battery

management systems ensure the safety of the lithium battery

pack. Towards the front on a server motherboard, dual 8-core

Intel Xeon processors provide the main computing hardware

complemented by a NVIDIA Tesla K20 GPGPU co-processor.

The Tesla GPGPU excels at image processing because of its

highly parallel nature and significantly increases the vision

processing capabilities of AERO.

A. Navigation Sensors

The main sensors AERO uses to navigate are the LIDAR,

IMU, mast-mounted stereo vision system, and wheel encoders.

GPS and other satellite based navigation aids are not used

because they are not compatible with challenge rules. We

selected a LMS151 LIDAR from SICK because of its 50

meter maximum range and excellent outdoor performance. The

LIDAR directly feeds the SLAM algorithm by very accurately

providing ranging data to trees and man-made features in the

environment. A KVH 1750 fiber optic ring gyro IMU provides

accelerations and angular velocities to enable AERO to dead-

reckon when no good LIDAR features are available. A fiber

optic ring gyro was selected because of its excellent stability

and very low drift rates, providing accurate dead-reckoning for

extended times without absolute positioning information from

the LIDAR. The mast-mounted cameras periodically pan and

extract trees from the scene to help localize the robot as well.

Finally, wheel odometry from the motor encoders is fused with

all the available data in an extended Kalman Filter (EKF) to

localize the robot beter than any one sensor can by itself.

B. Sample Detection and Classification

Sample detection and classification is entirely implemented

by the computer vision system. The top mast cameras identify

anomalies in the grass that could potentially be samples and

mark them on a probabilistic map on the robot. The robot

inspects each potential sample from a close distance using

the fixed, front-mounted stereo vision system. The easy and

medium samples are identified and classified using a Linear

Binary Pattern (LBP) classifier. Because the features of the

easy and medium samples are known ahead of time, the robot

is preloaded with a training set of data helping it identify these

samples. The hard samples are identified by their generally

different appearance in the environment. The metallic hard

samples are extracted from the grass background using simple

normalized RGB color filtering. In addition, the fixed forward

facing vision system extracts the location, major axis, and

bounding box of each samples in order to assist in planning a

suitable approach vector for the manipulator.

C. Manipulation

A Kinova Jaco 6-DOF manipulator was selected to collect

samples. It is a commercially available system that provides

AERO with the needed flexibility to pick up samples of

different sizes and place them on different locations on its

top plate. The manipulator has a three-finger underactuated

and compliant gripper with individual control over all fingers.

The manipulator utilizes brushless DC motors with Harmonic

drives resulting in low power consumption while still providing

up to 1kg payload.

III. PREVIOUS WORK

Our navigation algorithms are all based on the principle of

driving with tentacles. Dillmann et. al. [1] present a method

for extending the driving with tentacles algorithm [2]. They

propose a system that allows for the control of an autonomous

off-road vehicle that is more robust than the original work

due to its ability to incorporate additional sensor data into

the selection process. However, the algorithm only adds the

ability to add additional obstacles and in a generally binary

representation of existing. It did not adapt the underlying

principle, and thus does not use the additional information to

its fullest extent.

Quinlan et. al. [3] present a the concept of a real-time

deformable global path in their work. They present a system

where an initial global path is calculated, and as new sensor

data is incorporated into the model the path is deformed

locally to remain collision free. However, the computations are

relatively expensive locally. In addition, the global path is never

re-planned. If new sensor data has produced the possibility of

a new global path that is more optimal, but beyond the reach of

a local deformation, it will not be explored. Finally, collisions

are only taken into consideration when deforming the path.

Mataric et. al. [4] present the concept of integrating global-

tasks into behavior-based robots. In their method, a rough local

path is planned, and behaviors are biased such that the robot

will tend to follow the global path. In their work however,

the behavior set is limited to a small series of hard-coded

actions such as ’turn-left’, ’go backwards’, etc. The system

also takes up all of the computational resources on the robot,

but this work is fairly dated and may have been strongly
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affected by technology limitations. Finally, there is no concept

of exploring, the focus is solely on following a collision-

free path between global points making unsuitable for space

exploration.
The Haar algorithm in [5] and histogram of gradients

(HOG) are two of algorithms already implemented in the

OpenCV library for object detection. These are well known

algorithms, and have been modified in various ways for

many tasks. For the generation of disparity maps from stereo

cameras, Doppelmann in [6] explains the important parameters

such as SAD window size and demonstrates how they should

be set. In our work, we use the standard OpenCV imple-

menations of these algorithms leveraging the performance

optimizations of OpenCV.

IV. NAVIGATION OVERVIEW

The implementation of driving with tentacles involves the

generation of a set of arcs that emanate from the front

of the robot. The navigation algorithm uses the following

terminology.

Tentacle: A circular arc in space extending outwards from the

front of the robot. Its properties are determined by the speed

of the robot and the its position in a speed set.

Speed Set: A set of tentacles that correspond to a particular

linear velocity.

Pseudo-Subsumption: A heuristic method to implement sub-

sumption levels of in a behavior-based system, making them

soft constraints instead of hard constraints.

Object of Interest (OoI): Objects on the field being explored

which have been identified as samples.

A. Hierarchical Control
The AERO navigation system at its core uses the concept

of hierarchical control which can be divided into three levels

(Fig.2).

Fig. 2. The three levels of the hierarchical control. The supervisor coordinates
the mission-level tasks. The global planner plans beyond the sensor horizon
on the global map. The local planner plans on a local map representing a
snapshot of the current environment around the robot.

The supervisor is the top layer of control implemented by

a finite state machine and is responsible for mission level task

planning and coordinating robot state. Examples of mission-

level tasks include searching the field for objects of interest,

navigating to a specific OoI, and collecting an OoI once it

has been identified as a sample. It manages feedback from

the OoI classification, sample collector control, as well as the

navigation system. For the purposes of this work, we are only

concerned with current mission task output of the supervisor.

TABLE I
NAVIGATION SYSTEM FAILURE MODES

Failure Effect Up Chain Effect Down Chain

Supervisor NA Global planner receives
no new mission-tasks

Global Planner Robot does not complete
mission-task

Local planner receives
no new goal points

Local Planner Robot stops moving NA

The global planner is the layer of control below the su-

pervisor (Section VI). It is responsible for planning in the

global scale and implementing the mission-task specified by

the supervisor. The lowest layer of control is the local planner

(Section V) which uses pseudo-subsumption. It is responsible

for sending velocity commands to motor controllers and for

dynamic obstacle avoidance.

B. Fault Tolerance

The hierarchical control allows the navigation system to

have a high degree of fault tolerance. Systems further down in

the chain can operate independently of systems higher up the

chain. For example, if the supervisor fails, the global planner

will simply continue attempting to complete its last mission-

task. If the global planner fails, the local planner will attempt to

reach the last goal it received following its standard behaviors,

and then stop. Likewise, failures at the lower levels of the

control hierarchy always leave the robot in a controlled, defined

state. The failure modes are summarized in Table I.

V. LOCAL PLANNER

The local planner implements the low level platform drive

control and dynamic obstacle avoidance. As an input, it re-

ceives a goal in the global frame which it transforms into the

local frame, and the current sensor data. It produces as its

output the set of control velocities,
[
v ω

]
.

A. Driving with Tentacles

Driving with tentacles is an efficient path-planning method

[2] which utilizes a set of arcs (tentacles) as potential paths

to follow for the robot. Each tentacle is defined by its radius

and is grouped into speed sets. The tentacles in faster speed

sets are grouped more closely together with smaller radii but a

longer arc-length, and those in slower speed sets further apart

with larger radii but smaller arc-length (Fig. 3). In [2], tentacle

selection is performed by determining which tentacle is the

longest before running into an obstacle given a radius of safety

for the robot.

B. Extended Driving with Tentacles Algorithm

In order to improve the algorithm in [2], AERO implements

a modified version which takes into consideration a number

of behaviors suitable for a robot performing a search-and-

return mission. The behavior-based extension of the algorithm

is inspired by [7]. The modification combines the advantages

of the tentacles algorithm, computational speed and simplicity

and easy deterministic mapping to control outputs, with added
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Fig. 3. A visualization of the tentacles in a speed set. As the robot’s velocity
increases, the tentacles shift closer to the center line and become longer.

behaviors aligned with the rover’s mission. The behaviors

include:

• Move towards some predetermined goal destination

• Move towards unexplored terrain

• Move away from previously explored terrain

• Move away from ‘difficult’ terrain

The desired end behavior will select the longest tentacle

which moves the robot closest to the goal (if any) while

weighing the passing through the least amount of previously

explored terrain, the least amount of difficult terrain, and

exploring the most new area. To accomplish this, the local

planner is provided an occupancy grid generated by the global

planner. For each new occupancy grid, the local planner iterates

across each point on each tentacle in a speed set and examines

the corresponding point in the occupancy grid’s point trait.

There are two values that are updated at each point p[n] on

tentacle k based on the point trait in the occupancy grid:

The distance along the tentacle that has been traversed as in

equation 2, and the length modifier given by equation 3. In

addition, if the goal point or an obstacle is intersected, the

iteration across that tentacle is halted.

Δl[n] = ‖p[n],p[n−1]‖2 (1)

ll[n] = Δl[n]+ ll[n−1] (2)

lm[n] = lm[n−1]−Δl[n] ·

⎧⎪⎪⎨
⎪⎪⎩

DW if FREE HIGH COST

TW if TRAVERSED

−UW if UNKOWN

0 if FREE LOW COST
(3)

where DW,TW,and UW are weighting parameters for biasing

the behavior by their respective point trait.

lg =−GoalWeight ·
{

0 If no goal

‖p[nend ],pgoal‖2 If goal
(4)

l f [nend ] = ll[nend ]+ lm[nend ]+ lg[nend ] (5)

Equation 5 presents that the final effective length of the

tentacle is the summation of its actual length before reaching

any obstacles (if any) and modifiers based on the desired

behaviors. Therefore the longest, and thus ’best’ tentacle will

naturally become the one which best satisfies the behavioral

criteria. The priority of the behaviors can be adjusted by

modifying the DiffWeight, TravWeight, UnknWeight, and Goal-
Weight parameters.

It is important to note that the local planner does not

actually attempt to drive the entire length of the selected

tentacle. It produces a single set of control inputs to the

platform. With frequent updates and properly tuned weighting

parameters, the robot is able to follow a path towards the goal

while avoiding obstacles. No guarantees at all are made on the

optimality of this path, or that it will not become stuck in local

minima. When used in tandem with a global planner, however,

the majority of these pitfalls can be avoided.

In addition, as this is mainly a heuristic approach, instability

can result when two tentacles on opposite sides of the robot’s

center line have similar fitness values that swap back and forth

rapidly. The resulting effect on the robot will be oscillations

or jitter. To help damp these oscillations, a tunable rate-change

damping coefficient or low pass filter is applied on the resulting

tentacle selection. For example, if the previously selected

tentacle was at index 30 and the next tentacle is selected to

be at index 70 (the equivalent tentacle on the opposite side of

the centerline), with the rate limit is set to 5, the damper will

instead select tentacle 35. If tentacle 70 is selected again, it

will select 40, and so on.

VI. GLOBAL PLANNER

The global planner is responsible for planning in the global

world frame and completing the mission-level task specified

by the supervisor. It takes as its input the current mission-

task, and a locally centered global map generated by other

means such as a SLAM implementation which is outside the

scope of this paper. It produces as its output a series of way-

points in the global frame that it can provide to the local

planner. Due to the fact that global planner is not responsible

for actually generating control inputs to the platform and

that the local planner can improve the paths created due to

imperfect data, the global planner can run at a low update

frequency, on the order of once every 30 seconds. This saves

computational resources on the robot needed for mapping and

vision algorithms.

A. Carrot Path

Due to the behavioral properties of the local planner, the

global planner can leverage its way-point connecting abili-

ties to both save computation resources and compensate for

imperfect data on the global map. Instead of attempting to

produce a continuous path, the global planner instead produces

a series of loosely-connected way-points called a carrot path.

The carrot path strategy allows the global planner to relax

many constraints on the path planner algorithm it uses. Even if

it produces paths that are invalid because they cross an obstacle

boundary, the local planner will compensate. If the point turns

out to be unreachable due to imperfect data when the path

was created, it will be corrected at the next re-planning phase.

This would be undesirable in a robot operating in an enclosed
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environment with very good mapping data, but is actually

beneficial in an exploring robot in poorly mapped spaces as

it will generally cause it to explore more of the map. It also

again saves computational resources as the planning doesn’t

have to happen on a very fine search space.

B. Task-based Planning Strategies

The global planner also varies its strategies based on the

current mission-task provided by the supervisor. Currently,

there are two planning strategies that it uses: AStarCarrot,

which is a simple modification of the A* algorithm to make

it to produce carrot paths, and RRTCarrot, which is a simi-

larly simple extension of the Bi-Directional Rapidly-exploring

Random Tree Connect algorithm described in [8] to produce

carrot paths and allow it to gracefully time-out with a partial

path. Both planners operate in a purely 2D space. Orientation

is ignored due to the fact that the only use-case that orientation

matters, collecting an OoI, is handled by a control system that

supersedes the navigation system entirely.

AStarCarrot is used when the robot is attempting to navigate

to a specific point, such as an OoI. Its path-costs are based

on the same weighting values as the local planner, and its

heuristic is the Euclidean distance to the goal point. Its search-

space is discretized to approximately 1
10 th the distance between

points in the Carrot Path, to ensure that the output is at least

reasonably sure to be reachable. The final path is then culled

to only contain points spaced for the carrot path.

RRTCarrot is used when exploring the global map for OoI’s.

Normally RRT algorithms are avoided in 2D space because

they produce very sub-optimal and guaranteed inconsistent

between planning runs paths. However, when searching for

OoI’s this random behaviour is desirable because it encourages

a higher rate of exploration. To enforce at least some level of

consistency and reduce the likelihood of the planner sending

the robot to one end of the field in one plan and then the other

end on the next plan due to random chance, a rough ‘search

pattern’ of very distantly spaced way-points are connected in

series using the RRTCarrot planner. Similarly to AStarCarrot,

the ‘step-size’ when connecting nodes in the RRTCarrot is set

to be approximately 1
10 th the distance between points in the

carrot path, and the final output is culled.

VII. SAMPLE DETECTION AND RETRIEVAL

To detect the samples and classify them, we implement the

standard OpenCV version of HOG algorithm. Fig. 4 details

the flow of information in the vision system, and how the

sample location is passed to the manipulator controllers. Once

an object is detected, its 3D location information is extracted

from the disparity maps generated by the stereo cameras.

The manipulator controller then moves the arm to the desired

position using a inverse Jacobian velocity controller that takes

the current arm position and desired position as inputs.

In order to train the HOG, training images of each sample

need to be provided to train the classifier. Initially, a cloth-lined

and lit table-top stage was used to generate the images. This

allowed the background to be easily removed from the image,

Fig. 4. A flow diagram showing the components of the vision system for
detecting samples. The raw image streams are inputs, and after the samples is
identified in the frame, it is passed to the stages of the manipulator controller
to be picked up.

and leave just the sample in the image. After extensive testing

and training sessions though, this method did not provide good

detection rates.

In order to test the effect of the background on the training

images, a new set of images was generated with a white noise

background behind the sample. The detection rate using this

set of images increased significantly. We presume the detection

rate increases because the white noise background averages out

and the classifier ignores it, unlike a plain background.

VIII. ARM CONTROLLER

The arm controller node determines the type of grip to

use based off of the object classification, and its orientation.

The arm controller calculates a rough path and approaches the

object based on the best gripping strategy for the particular

object. The velocity controller node receives a desired point

from the arm controller, and converts it into a set of joint

velocities required to get to the point. The first part of this

node is the position control. When the desired position of the

arm is received, the node first calculates the current position

of the arm by feeding the joint angles, through the forward

kinematics. Based off of the two points the linear and rotational

errors are calculated. These errors are then each fed through

separate PD controllers. The output of the controllers are

then fed through a gain in order to convert the output into

cartesian velocity. The second part of this controller uses the

arm Jacobian calculated using the arm kinematics.

IX. RESULTS

The navigation and vision algorithms described above

were implemented with Robot Operating System (ROS) and

OpenCV in Ubuntu Linux 12.04 on AERO. The software sys-

tem was designed with flexibility and ease of implementation

in mind. ROS provides a set of libraries and development tools

on top of Linux tailored to robotics development that make it

easy to develop software in multiple language across multiple

systems. The ROS architecture involves creating a number

of nodes that communicate using an inter-process message
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passing system. In addition, there are a large collection of

software tools and libraries that implement a number of

algorithms and common tasks in robotics. Data collection for

testing and visualization of data was made especially easy with

these tools.
The test environment consisted of a series of impassible

static obstacles, and one randomly moving dynamic obstacle

near the center of the path from the start to the goal position.

An example of the path taken by the robot can be seen in Fig.

5. It demonstrates the robot successfully dodging the dynamic

obstacle while still moving towards the goal. A snapshot

visualization of the data of this event can be seen in Fig. 6.

Fig. 5. A plot of the position of the robot in the global frame which includes
a dynamic obstacle (a person moving in front of the robot) at location x ≈
0.0,y≈ 8.75. The blue line is the path the robot took. The green dashed line
is the carrot path. And the purple stars are points where the carrot path was
re-planned

Fig. 6. Visualization of the robot dodging an obstacle.

Fig. 7 shows the output of the vision processing algorithms.

The samples are detected, and their positions with respect to

the arm are calculated. The arm controller then moves the ma-

nipulator into position to retrieve the samples. During benchtop

testing, the sample was successfully retrieved multiple times.

X. CONCLUSION

This work presents the navigation and vision system ar-

chitecture for a sample search and return planetary rover.

Fig. 7. Benchtop test showing the disparity map generated by the stereo
cameras, and the two samples detected by the classifier. The sample positions
are passed to the arm controller which moves the manipulator to retrieve the
samples.

We implement a modified driving with tentacles algorithm

with three hierarchical navigation layers. The layered approach

provides advantages in its implementation including increased

reliability over a single layer approach and control of its

behavior using the proposed weighting scheme. The vision

system leverages existing implementations of algorithms for

object detection with training images, providing the positions

of the samples in the work space. The arm controller uses that

information to retrieve the samples.

Further testing over the next year will be conducted in

varied outdoor environments, including in locations with rough

terrain similar to extraterrestrial environments.
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